شروع به کار با هوش مصنوعی X-AI/Grok


Grok یک مدل هوش مصنوعی گفت‌وگومحور است که توسط شرکت xAI، به رهبری ایلان ماسک، توسعه داده شده و با پلتفرم X (توییتر سابق) ادغام شده است. Grok با الهام از شخصیت‌های طناز و جسور طراحی شده و هدفش ارائه پاسخ‌هایی دقیق، گاهی با لحن شوخ‌طبع، و درک بهتر سوالات پیچیده کاربران است. این مدل تلاش می‌کند تا علاوه بر پاسخ‌دهی مبتنی بر داده‌های زنده از شبکه X، تعامل انسانی‌تری با کاربران برقرار کند و رقیبی برای مدل‌هایی مانند GPT و Gemini باشد.

در حال حاضر، لیارا، مدل‌های زیر از X-AI/Grok را در API خود پشتیبانی می‌کند:

  • مدل x-ai/grok-3-mini-beta
  • مدل x-ai/grok-3-beta

پس از ایجاد سرویس هوش مصنوعی و دریافت baseUrl و کلید API، می‌توانید از مدل‌های Grok استفاده کنید.

در قطعه کدهای ارائه‌شده توسط لیارا برای اتصال به مدل، از OpenAI SDK استفاده می‌شود. تمامی مدل‌هایی که لیارا ارائه می‌دهد؛ سازگار با OpenAI SDK هستند.

اتصال به مدل

برای اتصال به مدل در سطح کد، می‌توانید از دو ابزار استفاده کنید:

  • OpenAI SDK: ابزار رسمی ارائه‌شده توسط OpenAI. تمامی مدل‌های ارائه‌شده در لیارا، با این SDK سازگار هستند.
  • AI SDK: ابزار ارائه‌شده توسط Vercel. این SDK، تنها برای جاوااسکریپت و تایپ‌اسکریپت در دسترس است.

در ادامه، نحوه اتصال به مدل، هم با OpenAI SDK و هم با AI SDK، بررسی شده است.

برای اتصال به مدل با OpenAI SDK، می‌توانید از قطعه کدهای زیر، استفاده کنید.

در ابتدا، برای استفاده از مدل هوش مصنوعی مدنظر خود در جاوااسکریپت، باید پکیج openai را نصب کنید. برای این کار، می‌توانید از npm یا yarn استفاده کنید:

کپی
npm install openai # or yarn add openai

سپس، می‌توانید مانند قطعه کد زیر، به مدل هوش مصنوعی خود متصل شوید:

کپی
const OpenAI = require('openai');

const openai = new OpenAI({
  baseURL: '<baseUrl>',
  apiKey: '<LIARA_API_KEY>',
});

async function main() {
  const completion = await openai.chat.completions.create({
    model: '<model_name>',
    messages: [
      {
        role: 'user',
        content: 'Hello!',
      },
    ],
  });

  console.log(completion.choices[0].message);
}

main();

در قطعه کد‌های فوق، به‌جای <baseUrl>، آدرس سرویس هوش مصنوعی خود را قرار دهید و به‌جای <LIARA_API_TOKEN>، کلید API خود را وارد کنید. همچنین، به‌جای <model_name>، نام یکی از مدل‌های فوق را قرار دهید.

پارامترهای قابل تنظیم

در OpenAI SDK، شما می‌توانید پارامترهای زیر را تنظیم کنید.

در نظر داشته باشید که پارامترهای زیر، ممکن است در برخی از مدل‌ها، پشتیبانی نشوند.

  • frequency_penalty: عددی بین -2 تا 2. کاهش یا افزایش احتمال تکرار کلمات پرتکرار در پاسخ. هرچه بالاتر باشد؛ تنوع بیشتر است
  • logit_bias: تغییر احتمال ظاهر شدن توکن‌های خاص
  • n: تعداد پاسخ‌هایی که قرار است مدل همزمان تولید کند.
  • response_format: مدل را مجبور می‌کند خروجی را به فرمت خاصی برگرداند
  • seed: مقدار عددی ثابت برای شروع تولید تصادفی، در صورت نیاز، به خروجی‌های قابل تکرار
  • stop: آرایه‌ای از رشته‌ها برای اینکه مدل هنگام رسیدن به آن‌ها پاسخ را متوقف کند
  • stream: اگر true باشد، پاسخ مدل به صورت استریم ارسال می‌شود. برای پیاده‌سازی‌های real-time یا رابط کاربری، این حالت مفید است
  • stream_options: تنظیمات مربوط به حالت stream. فقط وقتی استفاده می‌شود که stream: true باشد
  • temperature: عددی بین 0 تا 2. کنترل میزان تصادفی بودن خروجی؛ عدد کمتر، واقع‌گرایی بیشتر و عدد بیشتر، خلاقیت بیشتر
  • tool_choice: تعیین کردن اینکه مدل چه زمانی Tool را فراخوانی کند (به‌صورت هوشمند یا همیشه)
  • tools: مشخص کردن یک‌سری Tool که مدل در صورت نیاز، آن‌ها را فراخوانی کند
  • user: شناسه‌ی کاربر نهایی. برای دسته‌بندی بهتر درخواست‌ها و جلوگیری از سوءاستفاده، به‌کار می‌رود

در ادامه، مثال استفاده از این پارامترها، در زبان‌های مختلف، قرار گرفته است:

کپی
from openai import OpenAI

client = OpenAI(
  base_url='<baseUrl>',
  api_key='<LIARA_API_KEY>',
)

response = client.chat.completions.create(
    model="<model_name>",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "write a short article about Machine Learning in json"}
    ],
    frequency_penalty=1.2,
    presence_penalty=1.0,
    temperature=0.8,
    top_p=0.9,
    n=2,
    seed=42,
    stop=["\nUser:", "\nSystem:"],
    logit_bias={"50256": -100}, 
    stream=False,
    stream_options=None,
    response_format={"type": "json_object"},
    tool_choice="auto",
    tools=[
        {
            "type": "function",
            "function": {
                "name": "summarize_text",
                "description": "summarizing a long text",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "text": {"type": "string", "description": "the text should be summarized"}
                    },
                    "required": ["text"]
                }
            }
        }
    ],
)

print(response)

در قطعه کد‌ فوق، به‌جای <baseUrl>، آدرس سرویس هوش مصنوعی خود را قرار دهید و به‌جای <LIARA_API_TOKEN>، کلید API خود را وارد کنید. همچنین، به‌جای <model_name>، نام یکی از مدل‌های فوق را قرار دهید.